Selecting Fuzzy Rules with Forgetting in Fuzzy Classification Systems
نویسندگان
چکیده
This paper proposes a rule selection method with the destructive learning algorithm to construct a compact fuzzy classification system with high performance. In this paper, first we construct a fuzzy classification system by generating fuzzy rules from numerical data, and consider the fuzzy classification system based on fuzzy rules a network. Then we select significant fuzzy rules from the rule set by the proposed method which can remove unnecessary fuzzy rules. We demonstrate the effectiveness of the proposed method by applying it to the classification problem of the iris data of Fisher. Figure 1: Simple fuzzy grid
منابع مشابه
Adaptive Fuzzy Rule-Based Classification Systems - Fuzzy Systems, IEEE Transactions on
This paper proposes an adaptive method to construct a fuzzy rule-based classification system with high performance for pattern classification problems. The proposed method consists of two procedures: an error correction-based learning procedure and an additional learning procedure. The error correction-based learning procedure adjusts the grade of certainty of each fuzzy rule by its classificat...
متن کاملA hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection
A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...
متن کاملModified CLPSO-based fuzzy classification System: Color Image Segmentation
Fuzzy segmentation is an effective way of segmenting out objects in images containing both random noise and varying illumination. In this paper, a modified method based on the Comprehensive Learning Particle Swarm Optimization (CLPSO) is proposed for pixel classification in HSI color space by selecting a fuzzy classification system with minimum number of fuzzy rules and minimum number of incorr...
متن کاملA QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES
Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only considers both accuracy and generalization criteria in a single objective fu...
متن کاملGENERATING FUZZY RULES FOR PROTEIN CLASSIFICATION
This paper considers the generation of some interpretable fuzzy rules for assigning an amino acid sequence into the appropriate protein superfamily. Since the main objective of this classifier is the interpretability of rules, we have used the distribution of amino acids in the sequences of proteins as features. These features are the occurrence probabilities of six exchange groups in the seque...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004